Significance of Na/Ca exchange for Ca2+ buffering and electrical activity in mouse pancreatic beta-cells.
نویسندگان
چکیده
We have combined the patch-clamp technique with microfluorimetry of the cytoplasmic Ca2+ concentration ([Ca2+]i) to characterize Na/Ca exchange in mouse beta-cells and to determine its importance for [Ca2+]i buffering and shaping of glucose-induced electrical activity. The exchanger contributes to Ca2+ removal at [Ca2+]i above 1 microM, where it accounts for >35% of the total removal rate. At lower [Ca2+]i, thapsigargin-sensitive Ca2+-ATPases constitute a major (70% at 0.8 microM [Ca2+]i) mechanism for Ca2+ removal. The beta-cell Na/Ca exchanger is electrogenic and has a stoichiometry of three Na+ for one Ca2+. The current arising from its operation reverses at approximately -20 mV (current inward at more negative voltages), has a conductance of 53 pS/pF (14 microM [Ca2+]i), and is abolished by removal of external Na+ or by intracellularly applied XIP (exchange inhibitory peptide). Inhibition of the exchanger results in shortening (50%) of the bursts of action potentials of glucose-stimulated beta-cells in intact islets and a slight (5 mV) hyperpolarization. Mathematical simulations suggest that the stimulatory action of glucose on beta-cell electrical activity may be accounted for in part by glucose-induced reduction of the cytoplasmic Na+ concentration with resultant activation of the exchanger.
منابع مشابه
Effect of Na/Ca exchange on plateau fraction and [Ca]i in models for bursting in pancreatic beta-cells.
In the presence of an insulinotropic glucose concentration, beta-cells, in intact pancreatic islets, exhibit periodic bursting electrical activity consisting of an alternation of active and silent phases. The fraction of time spent in the active phase over a period is called the plateau fraction and is correlated with the rate of insulin release. However, the mechanisms that regulate the platea...
متن کاملOverexpression of the Na/Ca exchanger shapes stimulus-induced cytosolic Ca(2+) oscillations in insulin-producing BRIN-BD11 cells.
In response to glucose, mouse beta-cells display slow oscillations of the membrane potential and cytosolic free Ca(2+) concentration ([Ca(2+)](i)), whereas rat beta-cells display a staircase increase in these parameters. Mouse and rat islet cells differ also by their level of Na/Ca exchanger (NCX) activity. The view that the inward current generated by Na/Ca exchange shapes stimulus-induced ele...
متن کاملNCX1 Na/Ca exchanger splice variants in pancreatic islet cells.
In the rat pancreatic beta-cell, Na/Ca exchange displays a quite high capacity. The cell is equipped with two alternatively spliced Na/Ca exchanger-1 (NCX1) isoforms, namely NCX1.3 and NCX1.7. To examine the existence of a possible functional difference between these splice variants, they were cloned, together with the heart variant NCX1.1, and expressed in human embryonic kidney-293 (HEK293) a...
متن کاملOpposite effects of glucose on plasma membrane Ca2+-ATPase and Na/Ca exchanger transcription, expression, and activity in rat pancreatic beta-cells.
When stimulated by glucose the pancreatic beta-cell displays large oscillations of the intracellular free Ca2+concentration, resulting from intermittent Ca2+ entry from the outside and outflow from the inside, the latter process being mediated by the plasma membrane Ca2+-ATPase (PMCA) and the Na+/Ca2+ exchanger (NCX). To understand the respective role of these two mechanisms, we studied the eff...
متن کاملElectrogenic Na-Ca exchange clears Ca2+ loads from retinal amacrine cells in culture.
Calcium influx into cultured retinal amacrine cells is followed by a small, slow, inward current that we show here results from the operation of electrogenic Na-Ca exchange. The activity of the exchanger is shown to correlate with the magnitude of the Ca2+ load and to depend on both the Ca2+ and Na+ gradients. Li+ is unable to substitute for Na+ and in the absence of Na+, slow tail currents are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 76 4 شماره
صفحات -
تاریخ انتشار 1999